

Journal of Organometallic Chemistry 520 (1996) 85-96

# Regioselective addition of chalcogenol to an $\eta^3$ -propargyl/allenyl complex via formation of the carbon-chalcogen bond leading to new chalcogenoxyallyl species <sup>1</sup>

Fu-Yu Tsai, Ray-Hsi Hsu, Tsang-Miao Huang, Jwu-Ting Chen \*, Gene-Hsiang Lee, Yu Wang

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

Received 30 January 1996

#### Abstract

Regioselective addition of chalcogenol to an  $\eta^3$ -propargyl complex [Pt(PPh\_3)\_2( $\eta^3$ -C\_3H\_3)](BF<sub>4</sub>) (2) via the formation of the C-O, C-S, or C-Se bond generates new cationic chalcogenoxyallyl species {Pt(PPh\_3)\_2[ $\eta^3$ -CH\_2C(ER)CH\_2]](BF<sub>4</sub>) (E = O, R = Me (4a), Et (4b), <sup>i</sup>Pr (4c), <sup>i</sup>Bu (4d), Ph (4e); E = S, R = Et (5b), <sup>i</sup>Pr (5c), <sup>i</sup>Bu (5d), Ph (5e); E = Se, R = Ph (6e)) respectively in good yields. Thiol and selenol react with complex 2 much faster than alcohol; and 2 reacts with *p*-(HO)C<sub>6</sub>H<sub>4</sub>(SH) to exclusively yield the thioxyallyl product {Pt(PPh\_3)\_2[ $\eta^3$ -CH<sub>2</sub>C(SC<sub>6</sub>H<sub>4</sub>OH)CH<sub>2</sub>]}(BF<sub>4</sub>) (5f). Among the alcohols and phenol, the reactivity follows the order MeOH > EtOH > <sup>i</sup>PrOH > <sup>i</sup>BuOH > PhOH. A mechanism comprising a preceding coordination step is postulated. The X-ray structures of 4b, 4e, 5b, 5e and 6e are provided.

Keywords: Platinum; Regioselective addition reactions; X-ray structure analysis; Allenyl; Propargyl; Carbon-chalcogen bond formation

### **1. Introduction**

The chemistry of transition metal complexes with the propargyl or allenyl ligand of  $\eta^3$ -mold has recently attracted much attention [1-6]. These new organometallic species have been found to exhibit a remarkable bond-forming ability. Through facile regioselective nucleophilic addition at the central carbon of the ligand, the propargyl/allenyl complexes can be readily transformed into other organometallic species such as substituted allyl or trimethylenemethane derivatives. In typical cases, the cationic  $\eta^3$ -propargyl/allenyl complexes have been found to react with water and methanol to generate hydroxyallyl and methoxyallyl species via the construction of a C-O bond [7-10]. In this article, we report our continued studies of the reactions of an  $n^3$ -propargyl/allenyl complex of platinum with a variety of chalcogenols. Such reactions lead to the synthesis of new  $\eta^3$ -chalcogenoxyallyl complexes by undergoing C-O, C-S, and C-Se bond-forming routes. The reaction mechanism has been investigated.

## 2. Results and discussion

2.1. Synthesis and spectral characterization of  $\eta^3$ chalcogenoxyallyl complexes

The cationic  $\eta^3$ -propargyl/allenyl complex of platinum [Pt(PPh\_3)<sub>2</sub>( $\eta^3$ -C<sub>3</sub>H<sub>3</sub>)](BF<sub>4</sub>) (2) was prepared by reaction of *trans*-Pt(Br)(PPh\_3)<sub>2</sub>( $\eta^1$ -CHCCH<sub>2</sub>) (1) with AgBF<sub>4</sub> and was often used in situ for the ensuing reactions [7]. The reaction of 2 with equimolar amounts of absolute ethanol in predried chloroform at -20 °C yielded {Pt(PPh\_3)<sub>2</sub>[ $\eta^3$ -CH<sub>2</sub>C(OEt)CH<sub>2</sub>]](BF<sub>4</sub>) (4b). Using a large excess of ethanol it is possible to avoid the concurrent formation of {Pt(PPh\_3)<sub>2</sub>[ $\eta^3$ -CH<sub>2</sub>C(OH)-CH<sub>2</sub>]](BF<sub>4</sub>) (3) resulting from the reaction of 2 with water. The isolated yield of 4b was 65%. In the <sup>31</sup>P NMR spectrum of 4b, a singlet at  $\delta$  17.5 ( $J_{P-Pt} = 3678$ Hz) indicated that its two PPh<sub>3</sub> are magnetically equivalent. The syn- and anti-hydrogens of 4b were located at  $\delta$  3.05 and 2.81 respectively in the <sup>1</sup>H NMR spectrum;

Corresponding author.

<sup>&</sup>lt;sup>1</sup> This paper is dedicated to the late Professor Hidemasa Takaya of Kyoto University.

and its <sup>13</sup>C data of the terminal and allyl central carbons were found at  $\delta$  52.7 and 155.7. In such a reaction, the C-O bond was established exclusively at the central carbon of the  $\eta^3$ -propargyl/allenyl ligand. Analogous regioselective addition of another alcohol to 2 yielded the corresponding alkoxyallyl derivatives {Pt(PPh<sub>1</sub>)<sub>2</sub>-[ $\eta^3$ -CH<sub>2</sub>C(OR)CH<sub>2</sub>]](BF<sub>4</sub>) (R = Me (4a), <sup>i</sup>Pr (4c), <sup>i</sup>Bu (4d)) also in good yields. Intriguingly, the poor nucleophile as phenol could also react with 2, resulting in {Pt(PPh<sub>3</sub>)<sub>2</sub>[ $\eta^3$ -CH<sub>2</sub>C(OPh)CH<sub>2</sub>]](BF<sub>4</sub>) (4e). When 20 equivalents of phenol was used, 4e was obtained in 74% yield. The allyl hydrogens of 4e overlapped at  $\delta$  3.05. The <sup>13</sup>C data of the two allyl carbons of 4e (at  $\delta$  55.0 and 152.7) are comparable with those of 4b.

As for the synthesis of alkoxy- and phenoxyallyl via the formation of the C-O bond, the build-up of the C-S and C-Se bonds leading to the new thioxy- and selenoxyallyl complexes {Pt(PPh<sub>3</sub>)<sub>2</sub>[ $\eta^3$ -CH<sub>2</sub>C(ER)CH<sub>2</sub>]}- $(BF_4)$  (E = S, R = Et (5b), 'Pr (5c), 'Bu (5d), Ph (5e); E = Se, R = Ph (6e) could be achieved by adding thiol, thiophenol, or selenophenol respectively to complex 2 (Scheme 1). The use of excess RSH or RSeH would result in the formation of bis-chalcogenolato complexes cis-Pt(ER)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (E = S, Se) which had been dissolved well in benzene and thus could be easily removed from the desired chalcogenoxyallyl products. The NMR data of the thioxyallyl complexes are generally comparable with those of the alkoxyallyl complexes. The syn- and anti-hydrogens of 5e were found at  $\delta$  3.26 and 3.13, and its terminal and central carbons of allyl were at  $\delta$  63.0 and 142.3. The corresponding H NMR data of **6e** were at  $\delta$  3.34; and <sup>13</sup>C data were at  $\delta$  66.2 and 124.0. The substantial high-field shift of the allyl central carbon in 4e, 5e, and 6e is consistent with the decreasing order of the electron-withdrawing ability of the chalcogenoxy substituent.

# **2.2.** X-ray structures of $\eta^3$ -chalcogenoxyallyl complexes

The molecular structures of 4b, 4e, 5b, 5e, and 6e as single crystals have been determined by X-ray diffraction. They are all similar in a general sense. Figs. 1 and 2 show both the top and side views of the ORTEP drawings of 5b and 6e respectively as representatives. The two phosphorus atoms, two allyl terminal carbon atoms, and the platinum atom of such complexes are in





Fig. 1. ORTEP drawings of  $\{P(PPh_3)_2[\eta^3 CH_2C(SEt)CH_2]\}(BF_4)$  (5b). (a) Top view, all hydrogen atoms omitted for clarity. (b) Side view, phosphino phenyls and all hydrogen atoms omitted for clarity.

the molecular plane, and are disposed in a distorted square-planar geometry. The angles P-Pt-P' are about  $103^{\circ}$  and C<sub>1</sub>-Pt-C'<sub>1</sub> about 67°. The chalcogenoxyallyl moleties are in  $\eta^3$ -mold. Table 1 displays some important structural features of these chalcogenoxyallyl fragments. For the purpose of comparison, the data of unsubstituted allyl, hydroxyallyl and O-TMM ligands in analogous systems are also listed. The chalcogenoxyallyl central carbon inclines away from the metal, so that the  $Pt-C_c$  bond is slightly longer than two Pt-C<sub>t</sub> bonds. The angles  $C_t-C_c-C'_t$  are about 118°. The dihedral angles between the planes  $C_1 - C_2 - C'_1$  and  $C_t$ -Pt-C'<sub>t</sub> are about 63-67°. Based on such data, and comparing with other relevant results [7,10], the  $p_{\pi}-p_{\pi}$ interaction of all  $C_c$ -ER (E = O, S, Se) bonds is significant, but substantially weaker than that of the  $C_c-O$ double bond in the O-TMM complex, although the distances of the  $C_c-E$  bonds fall in the single bond range.

Table 1 Important structural features of  ${Pt(PPh_3)_2[\eta^3-CH_2C(ER)CH_2]}^+$ 

| x        | M-C,     | M-C <sub>c</sub> | C <sub>1</sub> -C <sub>c</sub> | Cc-Ct-C           | С-Е      | θ <sup>b</sup> | Ref  |
|----------|----------|------------------|--------------------------------|-------------------|----------|----------------|------|
|          | (Å)      | (Å)              | (Å)                            | (deg)             | (Å)      | (deg)          |      |
| Н        | 2.16(2)  | 2.07(2)          | 1.17(2)                        | 149(2)            | 1.0      | 95             | [7]  |
|          | 2.17(2)  |                  | 1.26(2)                        |                   |          |                |      |
| 0        | 2.12(1)  | 2.42(1)          | 1.47(2)                        | 108(1)            | 1.26(2)  | 567            | [11] |
|          | 2.15(1)  |                  | 1.50(2)                        |                   |          |                | []   |
| OH(3)    | 2.16(2)  | 2.16(2)          | 1.21(3)                        | 127(2)            | 1.52(3)  | 61(3)          | [7]  |
|          | 2.18(2)  |                  | 1.41(3)                        |                   |          |                | 1.1  |
| OE:(4b)  | 2.17(1)  | 2.21(1)          | 1.37(2)                        | 120(1)            | 1.42(2)  | 64(2)          | а    |
|          | 2.19(1)  |                  | 1.36(2)                        |                   |          |                |      |
| OPh(4e)  | 2.176(7) | 2.246(6)         | 1.38(1)                        | 117.3(7)          | 1.361(9) | 63,3(8)        | a    |
|          | 2.186(6) |                  | 1.43(1)                        |                   |          |                |      |
| SEt(5b)  | 2.18(2)  | 2.24(2)          | 1.39(3)                        | 118(2)            | 1.76(2)  | 63.3(2)        | a    |
|          | 2.20(2)  |                  | 1.45(3)                        |                   |          |                |      |
| SPh(5e)  | 2.177(6) | 2.204(6)         | 1.377(8)                       | 118.6(6)          | 1,743(6) | 66.1(7)        | [3]  |
|          | 2.177(6) |                  | 1.413(9)                       |                   |          |                | (°)  |
| SePh(úe) | 2.181(6) | 2.205(6)         | 1.41(1)                        | 117. <b>7(7</b> ) | 1.881(7) | 67.1(8)        | a    |
|          | 2.183(7) |                  | 1.43(1)                        |                   |          |                |      |

<sup>a</sup> This work.

<sup>b</sup> The dihedral angle  $\theta$  is defined by the planes  $C_1 - C_c - C'_1$  and  $C_1 - P_1 - C'_1$ .

# **2.3.** Relative reactivity and mechanism of addition of chalcogenol to $\eta^3$ -propargyl / allenyl complex

The relative reactivity of the  $\eta^3$ -propargyl/allenyl complex with respect to various chalcogenols could be estimated by the competitive reactions. For instance, equimolar amounts of MeOH and EtOH were allowed to concurrently react with 2. The NMR measurement showed that **4a** and **4b** in the ratio 65:35 resulted at the end of the reaction. Other selected rival pairs among the alcohols and phenols were examined in the same manner. The outcome is listed in Table 2. The normalized ratio MeOH:EtOH:'PrOH:'BuOH:PhOH is about 70:40:23:4:1, indicating that the steric effect is more important than the inductive effect. Similar NMR experiments indicated that the reactions of 2 with PhSH or PhSeH under the same conditions were finished within the measurement of the first spectra. Addition of both PhSH and PhSeH to 2 overwhelmingly exceeded methanol, even 20-fold methanol was employed. The reaction of 2 with equimolar amounts of p- $(HO)C_{A}H_{A}(SH)$  selectively results in C-S bond-formation, affording the thioxyallyl product  $\{Pt(PPh_3)_2[\eta^3 - CH_2C(SC_6H_4OH)CH_2]\}(BF_4)$  (5f) (Scheme 2). This result also indicates that -SH is a more efficient functional group than -OH in reacting with 2.

Two pathways of nucleophilic addition have been considered. One is that chalcogenol directly attacks the central carbon of the  $\eta^3$ -allenyl/propargyl ligand. The other is that it requires the precoordination of chalcogenol to the metal, so that addition of chalcogenol to the organic ligand may be facilitated. In viewing the aforementioned studies of reactivity, the latter process seems to be more plausible. The better ligands such as RSH, RSeH react with 2 much faster than alcohol. As to the reactions with alcohol, the ligation can be facilitated by a smaller alcohol. Phenol, which is a bulky poor nucleophile, reacts the slowest with 2 among all studied chalcogenol. The coordination of chalcogenol to 2 provides the metal with an opportunity to promote nucleophilic addition to the propargyl/allenyl moiety. There are two possible courses for such metal-mediated construction of the C-E bonds that are worthy of attention. The first is as shown in Scheme 3. Migration of

Table 2

Relative yields of the chalcogenoxyallyl formed from competitive chalcogenols reacting with 2

| · · · · · · · · · · · · · · · · · · · |              | •                | ~                | •               |                  |                  |
|---------------------------------------|--------------|------------------|------------------|-----------------|------------------|------------------|
| 1 MeOH/E                              | tOH 4a (65%  | b) 4b (35%)      |                  |                 |                  |                  |
| 2 MeOH/                               | PrOH 4a (75% | (r)              | <b>4c (</b> 25%) |                 |                  |                  |
| 3 EtOH/ <sup>1</sup> P                | rOH          | <b>4h (</b> 65%) | <b>4c (</b> 35%) |                 |                  |                  |
| 4 EtOH/ <sup>1</sup> B                | uOH          | <b>4b</b> (91%)  |                  | <b>4d (</b> 9%) |                  |                  |
| 5 <sup>a</sup> <sup>1</sup> BuOH/F    | hOH          |                  |                  | <b>4d</b> (79%) | <b>4e (</b> 21%) |                  |
| 6 <sup>b</sup> PhSH/M                 | юH           |                  |                  |                 |                  | <b>5e (100%)</b> |
| 7 PhSeH/N                             | 60U          |                  |                  |                 |                  | <b>6e (100%)</b> |

<sup>a</sup> In this entry, <sup>t</sup>BuOH and PhOH are both used in 20-fold equivalents of 2; in the remaining entries, each used REH equimolar with 2.

<sup>b</sup> In this entry, the molar ratio PhSH: MeOH is 1:20.



Fig. 2. ORTEP drawings of  $(Pt(PPh_3)_2(\eta^3-CH_2C(SePhY:H_2))(BF_4)$ (6e). (a) Top view, all hydrogen atoms omitted for clarity. (b) Side view, phosphino phenyls and all hydrogen atoms omitted for clarity.





chalcogenol from the metal to the central carbon of the  $\eta^3$ -propargyl/allenyl ligand first yields a metallacyclobutene II. The ensuing 1,3-hydrogen shift to the olefinic  $\alpha$ -carbon of II achieves the chalcogenoxy product. The formation of metallacyclobutene from the  $\eta^3$ propargyl/allenyl has been observed in a rhenium system [11].

In another pathway, intramolecular hydrogen transfer from coordinated chalcogenol to the  $\eta^3$ -propargyl/allenyl group results in a  $(\pi$ -allene)chalcogenolato intermediate III. The reaction is then accomplished by an allene insertion to the chalcogenolato group. This is illustrated in Scheme 4. Migratory insertions of allene into M-C bonds have been known [12-14]. We also found that bubbling allene through cis-Pt(PPh<sub>3</sub>)<sub>2</sub>(OAc)<sub>2</sub> caused no reaction. However, treating this solution with 1 equivalent of  $HBF_4$  etherate readily generates the acetyloxyallyl complex  $\{Pt(PPh_3), [\eta^3 CH_2C(OAc)CH_2$ ](BF<sub>4</sub>) [3]. Presumably, one of the acetate ligands of cis-Pt(PPh<sub>3</sub>)<sub>2</sub>(OAc)<sub>2</sub> may be deliberated by protonation. The allene coordination follows, resulting in a ( $\pi$ -allene)acetato species IV and then the acetyloxyallyl product (Scheme 5). None of the mechanisms of Schemes 3 and 4 should be excluded without further investigation.

## 3. Experimental section

#### 3.1. General

The IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were routinely measured on Bruker ACE-200, ACE-300, or Varian Unity + 400 spectrometers. For the <sup>31</sup>P NMR spectra, spectrometer frequencies of 81.015 or 121.49 MHz were employed respectively. Chemical shifts are given in ppm ( $\delta$ ) relative to 85% H<sub>3</sub>PO<sub>4</sub> in CDCl<sub>3</sub>. The corresponding frequencies for <sup>13</sup>C NMR spectra were 50.32, 75.47 or 100.64 MHz for the respective spectrometers. Mass spectrometric analyses were collected



Scheme 5.

on a JEOL SX-102A spectrometer. Elemental analyses were carried out on a Perkin-Elmer 2400 CHiN analyzer.

#### 3.2. Synthesis and characterization

# 3.2.1. $\{Pt(PPh_3)_2[\eta^3-CH_2C(OMe)CH_2]\}(BF_4)$ (4a)

Refer to 4b for the experimental details. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  17.3 ( $J_{P-P1} = 3685$  Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.80 (2H, dd with <sup>195</sup>Pt satellites,  $J_{H-H} = 4.7$  Hz,  $J_{P-H} = 9.1$  Hz,  $J_{P1-H} = 39.6$  Hz,  $H_{anti}$ ), 3.06 (d, 2H,  $J_{H-H} = 4.7$  Hz,  $H_{syn}$ ), 3.44 (3H, t,  $J_{P-H} = 2.1$  Hz, OC H<sub>3</sub>), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ 52.3 (d with <sup>195</sup>Pt satellites,  $J_{P-C} \approx 37$  Hz,  $J_{P1-C} \approx 100$ Hz, C<sub>1</sub>), 55.7 (s, OCH<sub>3</sub>), 127–135 (phenyl carbons), 136.1 ( $J_{P1-C} \approx 27$  Hz, C<sub>c</sub>).

# 3.2.2. $\{Pt(PPh_3)_2[\eta^3-CH_2C(OEt)CH_2]\}(BF_4)$ (4b)

The  $\eta^3$ -propargyl complex 2 was prepared in situ from *trans*-Pt( $\eta^1$ -CHCCH<sub>2</sub>)(Br)(PPh<sub>3</sub>)<sub>2</sub> (211 mg, 0.25 mmol) and AgBF<sub>4</sub> (50 mg, 0.26 mmol) in predried CH<sub>2</sub>Cl<sub>2</sub> at -20 °C. After filtering off AgBr precipitate, absolute ethanol (20 equiv.) was charged to the filtrate. The solution was stirred at -20 °C for 10 h, and then

| Table | 3       |            |       |        |          |  |
|-------|---------|------------|-------|--------|----------|--|
| X-ray | crystal | norometers | and d | ata co | llection |  |

# 3.2.3. $\{Pt(PPh_3)_2[\eta^3-CH_2C(O^iPr)CH_2]\}(BF_4)$ (4c)

The yield of **2c** was 77% (130 mg) from 156 mg (0.19 mmol) of **1**. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  17.8 ( $J_{P-Pt} =$  3662 Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.21 (6H, d,  $J_{H-H} =$  6.0 Hz, C H<sub>3</sub>), 2.79 (2H, dd with <sup>195</sup>Pt satellites,  $J_{H-H} =$  3.5 Hz,  $J_{P-H} =$  9.2 Hz,  $J_{Pt-H} =$  41.5 Hz,  $H_{anti}$ ), 3.02 (2H, d,  $J_{H-H} =$  3.5 Hz, H<sub>syn</sub>), 4.00 (1H, hep,  $J_{H-H} =$  6.0 Hz, C H), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  21.7 (s, C H<sub>3</sub>), 52.0 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} =$  36.5 Hz,  $J_{Pt-C} =$  93.6 Hz, C<sub>1</sub>), 72.2 (s, CH), 127–135

| alan dalam kanan kana | 4b                                                                   | 4e                                               | 5b                                                | 5e                                                                                | 6e                                               |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|
| Formula                                                                                                         | PtC <sub>41</sub> H <sub>38</sub> OP <sub>2</sub><br>BF <sub>4</sub> | $\frac{PtC_{45}H_{39}OP_2}{BF_4 \cdot CH_2Cl_2}$ | $\frac{PtC_{41}H_{39}SP_2}{BF_4 \cdot 1.5CHCl_3}$ | $\frac{\text{PtC}_{45}\text{H}_{39}\text{SP}_2}{\text{BF}_4 \cdot \text{CHCl}_3}$ | $\frac{P(C_{45}H_{19}SeP_2)}{BF_4 \cdot CHCl_3}$ |
| Formula weight                                                                                                  | 890.58                                                               | 1089.58                                          | 1086.74                                           | 1070.36                                                                           | 1121.99                                          |
| Crystal dimensions (mm <sup>3</sup> )                                                                           | $0.25 \times 0.3 \times 0.4$                                         | $0.25 \times 0.25 \times 0.5$                    | $0.13 \times 0.28 \times 0.4$                     | $0.15 \times 0.4 \times 0.45$                                                     | $0.3 \times 0.4 \times 0.4$                      |
| Space group                                                                                                     | P21/n                                                                | РĨ                                               | Fdd2                                              | PĨ                                                                                | P1                                               |
| a (Å)                                                                                                           | 11.560(4)                                                            | 11.256(2)                                        | 38.856(4)                                         | 12.842(3)                                                                         | 11.188(4)                                        |
| ь(Å)                                                                                                            | 21.027(7)                                                            | 11.605(1)                                        | 39.112(3)                                         | 12.989(3)                                                                         | 11.901(4)                                        |
| c (Å)                                                                                                           | 15.591(7)                                                            | 17.820(3)                                        | 10.584(1)                                         | 13.589(5)                                                                         | 18.292(3)                                        |
| a (deg)                                                                                                         | 90                                                                   | 106.76(1)                                        | 90                                                | 89.85(2)                                                                          | 107.78(2)                                        |
| B (deg)                                                                                                         | 96.12(4)                                                             | 91.29(2)                                         | 90                                                | 92.98(3)                                                                          | 90.69(2)                                         |
| y (deg)                                                                                                         | 90                                                                   | 107.05(1)                                        | 90                                                | 106.66(2)                                                                         | 106.24(2)                                        |
| V (Å <sup>3</sup> )                                                                                             | 3768(3)                                                              | 2116.2(5)                                        | 16085(3)                                          | 2168(1)                                                                           | 2214(1)                                          |
| 2                                                                                                               | 4                                                                    | 2                                                | 16                                                | 2                                                                                 | 2                                                |
| $\rho$ (calc) (mg m <sup>-3</sup> )                                                                             | 1.570                                                                | 1.608                                            | 1.646                                             | 1.639                                                                             | 1.683                                            |
| F(000)                                                                                                          | 1758                                                                 | 1013                                             | 7865                                              | 976                                                                               | 1097                                             |
| Radiation, $\lambda$ (Å)                                                                                        | Μο Κ α, 0.7107                                                       | Mo K α, 0.7107                                   | Μο Κα, 0.7107                                     | Μο Κα, 0.7107                                                                     | Μο, Κα, 0.7107                                   |
| T (K)                                                                                                           | 298                                                                  | 298                                              | 298                                               | 298                                                                               | 298                                              |
| $\mu$ (mm <sup>-1</sup> )                                                                                       | 3.895                                                                | 3.472                                            | 3.99                                              | 3.30                                                                              | 4.317                                            |
| Transmission                                                                                                    | 0.557-1.0                                                            | 0.778-1.0                                        | 0.673-1.0                                         | 0.75-1.0                                                                          | 0.752-1.0                                        |
| Max $2\theta$ (deg)                                                                                             | 45                                                                   | 50                                               | 50                                                | 50                                                                                | 45                                               |
| h. k. l                                                                                                         | ± 12, 22, 16                                                         | $\pm 12, 13, \pm 20$                             | 46, 46, 12                                        | $\pm 15, 15, \pm 16$                                                              | $\pm 12, 12, \pm 19$                             |
| No. of reflections measured                                                                                     | 4915                                                                 | 7455                                             | 3735                                              | 7632                                                                              | 5779                                             |
| No. of reflections observed                                                                                     | $3358 (> 2.0\sigma)$                                                 | $5777 (> 2.0\sigma)$                             | $2945 (> 2.0 \sigma)$                             | $6446 (> 2.0\sigma)$                                                              | $4856 (> 2.0\sigma)$                             |
| No. of variables                                                                                                | 406                                                                  | 515                                              | 395                                               | 539                                                                               | 524                                              |
| R(F)                                                                                                            | 0.045                                                                | 0.037                                            | 0.055                                             | 0.031                                                                             | 0.033                                            |
| Rw(F)                                                                                                           | 0.046                                                                | 0.037                                            | 0.047                                             | 0.026                                                                             | 0.034                                            |
| S                                                                                                               | 2.11                                                                 | 1.39                                             | 2.60                                              | 1.95                                                                              | 1.96                                             |
| $(\Delta/\sigma)_{\rm max}$                                                                                     | 0.0312                                                               | 0.0031                                           | 0.0242                                            | 0.042                                                                             | 0.0077                                           |

(phenyl C), 155.0 (with <sup>195</sup>Pt satellites,  $J_{Pt-C} = 34.0$ Hz, C<sub>c</sub>). Anal. Found: C, 55.89; H, 4.32. C<sub>42</sub>H<sub>41</sub>OP<sub>2</sub>PtBF<sub>4</sub> Calc.: C, 55.70; H, 4.56%.

# 3.2.4. ${Pt(PPh_3)_2[\eta^3-CH_2C(O'Bu)CH_2]}(BF_4)$ (4d)

The yield of 4d was 58% (127 mg) from 200 mg (0.24 mmol) of 1. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.4 ( $J_{P-Pt} =$  3663 Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.31 (9H, s, CH<sub>3</sub>), 2.75

(2H, dd with <sup>195</sup>Pt satellites,  $J_{H-H} = 4.1$  Hz,  $J_{P-H} = 9.3$ Hz,  $J_{Pt-H} = 39.6$  Hz,  $H_{anti}$ ), 3.09 (2H, d,  $J_{H-H} = 4.1$ Hz,  $H_{syn}$ ), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ 28.7 (s, CH<sub>3</sub>), 55.0 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} = 4.5$ , 40.2 Hz,  $J_{Pt-C} = 115.4$  Hz, C<sub>1</sub>), 82.9 (s, OCMe<sub>3</sub>), 127–135 (phenyl C), 155.7 (t with <sup>195</sup>Pt satellites,  $J_{P-C} = 3.5$  Hz,  $J_{Pt-C} = 31.7$  Hz, C<sub>2</sub>). Anal. Found: C, 55.71; H, 4.54. C<sub>43</sub>H<sub>43</sub>OP<sub>2</sub>PtBF<sub>4</sub> Calc.: C, 56.16; H, 4.71%.

Table 4 Coordinates and isothermal data of non-hydrogen atoms for 4b with e.s.d.s in parentheses

| Atom | x            | у            | 2           | Beq       |  |
|------|--------------|--------------|-------------|-----------|--|
| Pt   | 0.05105(4)   | 0.636042(25) | 0.18395(3)  | 3.432(21) |  |
| P1   | 0.0470(3)    | 0.74450(16)  | 0.20111(21) | 3.62(16)  |  |
| P2   | 0.04479(25)  | 0.59632(16)  | 0.32030(20) | 3.43(15)  |  |
| 01   | -0.1151(11)  | 0.5742(7)    | 0.0312(8)   | 12.5(9)   |  |
| Cl   | 0.0558(12)   | 0.6388(7)    | 0.0449(8)   | 6.5(8)    |  |
| C2   | 0.0039(13)   | 0.5823(8)    | 0.0632(9)   | 7.7(10)   |  |
| C3   | 0.0571(13)   | 0.5425(8)    | 0.1235(8)   | 7.0(9)    |  |
| C4   | -0.199(3)    | 0.5376(22)   | 0.0553(19)  | 34.1(40)  |  |
| C5   | -0.3080(16)  | 0.5278(15)   | 0.0098(18)  | 20.5(24)  |  |
| C6   | 0.1810(9)    | 0.7831(6)    | 0.2477(7)   | 3.9(6)    |  |
| C7   | 0.2810(9)    | 0.7463(6)    | 0.2700(8)   | 4.3(7)    |  |
| C8   | 0.3830(9)    | 0.7773(7)    | 0.2995(9)   | 6.1(8)    |  |
| C9   | 0.3880(11)   | 0.8417(7)    | 0.3074(10)  | 7.0(8)    |  |
| C10  | 0.2923(11)   | 0.8772(7)    | 0.2840(10)  | 7.0(8)    |  |
| C11  | 0.1883(11)   | 0.8481(6)    | 0.2549(10)  | 6.3(8)    |  |
| C12  | 0.0258(9)    | 0.7877(5)    | 0.0972(7)   | 3.2(6)    |  |
| C13  | 0.1175(9)    | 0.7887(6)    | 0.0476(7)   | 4.5(6)    |  |
| C14  | 0.1078(10)   | 0.8206(6)    | - 0.0292(7) | 4.7(7)    |  |
| C15  | 0.0059(10)   | 0.8513(6)    | - 0.0596(7) | 4.7(7)    |  |
| C16  | -0.0856(10)  | 0.8501(6)    | -0.0109(8)  | 4.9(6)    |  |
| C17  | - 0.0776(9)  | 0.8191(6)    | 0.0680(7)   | 4.2(6)    |  |
| C18  | -0.0721(9)   | 0.7690(6)    | 0.2612(7)   | 3.6(6)    |  |
| C19  | ·· 0.1815(9) | 0.7434(6)    | 0.2340(8)   | 4.2(7)    |  |
| C20  | -0.2763(10)  | 0.7592(7)    | 0.2770(9)   | 5.8(8)    |  |
| C21  | - 0.2606(12) | 0.7977(8)    | 0.3486(9)   | 7.0(9)    |  |
| C22  | -0.1518(12)  | 0.8240(8)    | 0.3764(9)   | 6.7(8)    |  |
| C23  | - 0,0609(10) | 0.8083(7)    | 0.3329(8)   | 5.2(7)    |  |
| C24  | 0.1733(8)    | 0.5502(5)    | 0.3590(6)   | 2.9(5)    |  |
| C25  | 0.2648(9)    | 0.5446(6)    | 0.3080(7)   | 3.8(6)    |  |
| C26  | 0.3639(9)    | 0.5090(6)    | 0.3355(8)   | 4.2(6)    |  |
| C11  | 0.3715(10)   | 0.4803(6)    | 0.4152(8)   | 4.9(7)    |  |
| C28  | 0.2828(10)   | 0.4867(6)    | 0.4674(8)   | 5.2(7)    |  |
| C29  | 0.1844(9)    | 0.5221(6)    | 0.4387(8)   | 4.2(6)    |  |
| C30  | - 0.0766(8)  | 0.5400(6)    | 0.3146(7)   | 3.6(6)    |  |
| C31  | - 0.0637(10) | 0.4754(6)    | 0.3287(8)   | 4.8(7)    |  |
| C32  | -0.1589(12)  | 0.4348(7)    | 0.3181(10)  | 6.9(8)    |  |
| C33  | 0.2668(11)   | 0.4580(8)    | 0.2932(9)   | 7.0(9)    |  |
| C34  | - 0.2837(10) | 0.5228(8)    | 0.2795(9)   | 6.3(8)    |  |
| C35  | -0.1878(10)  | 0.5637(7)    | 0.2893(8)   | 5.2(7)    |  |
| C36  | 0.0248(8)    | 0.6442(6)    | 0.4146(7)   | 3.5(6)    |  |
| C37  | - 0.0608(9)  | 0.6337(7)    | 0.4684(8)   | 5.0(7)    |  |
| C38  | 0.0680(11)   | 0.6693(7)    | 0.5426(9)   | 6.2(8)    |  |
| C39  | 0.0095(12)   | 0.7175(7)    | 0.5629(8)   | 6.2(8)    |  |
| C40  | 0.0952(11)   | 0.7296(7)    | 0.5092(9)   | 5.9(8)    |  |
| C41  | 0.1031(10)   | 0.6931(7)    | 0.4372(7)   | 4.6(6)    |  |
| В    | 0.45226      | 0.61440      | 0.14441     | 20.3(14)  |  |
| Fl   | 0.48415      | 0.64121      | 0.21943     | 14.7(4)   |  |
| F2   | 0.34431      | 0.63450      | 0.11211     | 16.0(4)   |  |
| F3   | 0.50987      | 0.62740      | 0.07464     | 18.1(5)   |  |
| F4   | 0.45692      | 0.54835      | 0.15546     | 13.0(4)   |  |

|  | Tab | le | 5 |
|--|-----|----|---|
|--|-----|----|---|

Coordinates and isothermal data of non-hydrogen atoms for 4e with e.s.d. in parentheses

| Atom | x             | y           | z            | Beq       |              |
|------|---------------|-------------|--------------|-----------|--------------|
| Pt   | 0.12941(3)    | 0.24456(3)  | 0.230831(16) | 2.494(10) |              |
| Pl   | 0.25831(15)   | 0.21857(16) | 0.13360(10)  | 2.71(8)   |              |
| P2   | 0.26958(16)   | 0.33002(16) | 0.34217(10)  | 2.64(8)   |              |
| 0    | -0.1375(4)    | 0.0482(5)   | 0.2222(3)    | 4.5(3)    |              |
| Cl   | 0.0391(6)     | 0.1791(7)   | 0.1481(4)    | 4.3(4)    |              |
| C2   | ··· 0.0803(6) | 0.1670(7)   | 0.2185(4)    | 3.9(4)    |              |
| C3   | -0.0342(6)    | 0.2749(6)   | 0.2871(4)    | 3.4(3)    |              |
| C4   | -0.1442(7)    | 0.0280(7)   | 0.2968(4)    | 4.2(4)    |              |
| C5   | -0.0782(7)    | - 0.0447(8) | 0.3133(5)    | 5.3(5)    |              |
| C6   | -0.0841(9)    | -0.0711(8)  | 0.3830(6)    | 6.8(6)    |              |
| C7   | - 0.1597(9)   | - 0.0256(9) | 0.4354(6)    | 6.8(6)    |              |
| C8   | -0.2301(8)    | 0.0446(9)   | 0.4189(5)    | 6.1(5)    |              |
| С9   | -0.2233(7)    | 0.0700(8)   | 0.3473(5)    | 4.8(5)    |              |
| C10  | 0.2455(6)     | 0.0559(6)   | 0.0816(4)    | 2,9(3)    |              |
| C11  | 0.3276(6)     | 0.0293(6)   | 0.0250(4)    | 3.6(3)    |              |
| C12  | 0.3180(7)     | - 0.0956(7) | -0.0148(4)   | 4.3(4)    |              |
| C13  | 0.2302(7)     | - 0.1928(7) | 0.0012(5)    | 4.9(4)    |              |
| C14  | 0.1503(7)     | - 0.1687(7) | 0.0563(5)    | 4.7(4)    |              |
| C15  | 0.1567(6)     | - 0.0450(7) | 0.0948(4)    | 3.7(4)    |              |
| C16  | 0.4280(6)     | 0.2917(6)   | 0.1587(4)    | 3.1(3)    |              |
| C17  | 0.4906(7)     | 0.4058(7)   | 0.1472(4)    | 4.2(4)    |              |
| C18  | 0.6207(7)     | 0.4588(8)   | 0.1681(5)    | 5.5(4)    |              |
| C19  | 0.6862(7)     | 0.3973(8)   | 0.1970(5)    | 5.7(5)    |              |
| C20  | 0.6251(7)     | 0.2854(8)   | 0.2090(5)    | 5.3(5)    |              |
| C21  | 0.4965(6)     | 0.2314(7)   | 0.1899(4)    | 3.7(4)    |              |
| C22  | 0.2163(6)     | 0.2881(6)   | 0.0617(4)    | 3.0(3)    |              |
| C23  | 0.1898(7)     | 0.4016(7)   | 0.0898(4)    | 4.0(4)    |              |
| C24  | 0.1568(7)     | 0.4585(7)   | 0.0388(5)    | 4,5(4)    |              |
| C25  | 0.1498(7)     | 0.4042(7)   | -0.0418(5)   | 4,7(4)    |              |
| C26  | 0.1751(7)     | 0.2918(8)   | -0.0704(4)   | 4.7(4)    |              |
| C27  | 0.2082(6)     | 0.2336(7)   | 0.0199(4)    | 3.8(4)    |              |
| C28  | 0.3913(6)     | 0.4716(6)   | 0.3396(3)    | 3.1(3)    |              |
| C29  | 0.3501(7)     | 0.5616(7)   | 0.3195(4)    | 4.0(4)    |              |
| C30  | 0.4346(7)     | 0.6737(7)   | 0.3181(5)    | 4.7(4)    |              |
| C31  | 0.5590(8)     | 0.6979(7)   | 0.3379(5)    | 5.5(5)    |              |
| C32  | 0.6015(7)     | 0.6101(8)   | 0.3573(5)    | 5.0(4)    |              |
| C33  | 0.5185(6)     | 0.4971(7)   | 0.3592(4)    | 5.7(4)    |              |
| C34  | 0.2032(6)     | 0.3818(6)   | 0.4343(4)    | 3.(R 3)   |              |
| C35  | 0.1158(7)     | 0.2931(7)   | 0.4582(4)    | 5.9(4)    |              |
| C36  | 0.0618(7)     | 0.3261(7)   | 0.5262(4)    | 4.4(4)    |              |
| C37  | 0.0945(8)     | 0.4496(8)   | 0.5708(4)    | 5.1(5)    |              |
| C38  | 0.1818(8)     | 0.5411(7)   | 0.5493(5)    | 5.7(5)    |              |
| C39  | 0.2358(7)     | 0.5073(7)   | 0.4804(4)    | 4.2(4)    |              |
| C40  | 0.3389(6)     | 0.2185(6)   | 0.3644(4)    | 2.8(3)    |              |
| C41  | 0.2989(7)     | 0.0929(6)   | 0.3171(4)    | 3.8(4)    |              |
| C42  | 0.3414(8)     | 0.0034(7)   | 0.3362(5)    | 4.9(4)    |              |
| C43  | 0.4252(8)     | 0.0391(8)   | 0.4018(5)    | 5.4(5)    |              |
| C44  | 0.4645(8)     | 0.1624(8)   | 0.4492(5)    | 5.1(4)    |              |
| C45  | 0.4217(7)     | 0.2529(7)   | 0.4326(4)    | 4.0(4)    |              |
| В    | 0.0725(10)    | 0.6609(10)  | 0.2487(6)    | 5.5(6)    |              |
| Fl   | 0.0088(9)     | 0.7049(8)   | 0.2286(5)    | 10.7(8)   |              |
| F2   | 0.1786(6)     | 0.6858(6)   | 0.2124(4)    | 10.8(4)   |              |
| F3   | 0.1093(6)     | 0.7173(7)   | 0.3282(3)    | 10.6(5)   |              |
| F4   | 0.0285(6)     | 0.5355(6)   | 0.2323(5)    | 12.0(5)   |              |
| C46  | 0.4406(10)    | 0.7553(13)  | 0.1350(6)    | 10.4(8)   |              |
| C11  | 0.4690(3)     | 0.6681(3)   | 0.04705(18)  | 8.92(18)  |              |
| C12  | 0.5482(4)     | 0.8963(4)   | 0.17603(24)  | 13.8(3)   | نسبوي راسبوي |

NMR (CDCl<sub>3</sub>)  $\delta$  55.0 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} =$  4.9, 39 Hz,  $J_{P-C} =$  101.3 Hz, C<sub>1</sub>), 127–135 (phenyl carbons), 152.7 (t,  $J_{P-C} =$  3.4 Hz,  $J_{Pt-C} =$  17.5 Hz, C<sub>c</sub>).

3.2.6.  $\{Pt(PPh_3)_2[\eta^3-CH_2C(SEt)CH_2]\}(BF_4)$  (5b)

Refer to 4b. The reaction was complete within 2 h, and the yield of 5b was 55% (118 mg) from 200 mg (0.24 mmol) of 1. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.0 ( $J_{P-Pt}$  =

Table 6 Coordinates and isothermal data of non-hydrogen atoms for 5b with e.s.d. in parentheses

| Atom | x            | у            | z            | B <sub>eq</sub> |
|------|--------------|--------------|--------------|-----------------|
| Pt   | 0.105671(18) | 0.179010(20) | 0.10907      | 2.87(3)         |
| S    | 0.07480(15)  | 0.14723(17)  | -0.1757(6)   | 5.8(4)          |
| Pl   | 0.16394(11)  | 0.18880(12)  | 0.1166(8)    | 3.3(3)          |
| P2   | 0.08303(13)  | 0.22739(14)  | 0.1913(6)    | 3.3(3)          |
| Cl   | 0.0559(4)    | 0.1537(5)    | 0.0777(17)   | 3.7(11)         |
| C2   | 0.0784(5)    | 0.1405(5)    | -0.0119(19)  | 4.4(12)         |
| C3   | 0.1116(5)    | 0.1278(4)    | 0.0310(19)   | 3.8(11)         |
| C4   | 0.0352(8)    | 0.1772(7)    | -0.197(3)    | 12.4(23)        |
| C5   | 0.0218(14)   | 0.1757(12)   | -0.350(5)    | 15.3(42)        |
| C5'  | -0.0063(18)  | 0.177(3)     | -0.223(12)   | 26.4(90)        |
| C6   | 0.1846(5)    | 0.1661(5)    | 0.2463(21)   | 4.7(11)         |
| C7   | 0.1688(5)    | 0.1372(6)    | 0.2933(22)   | 5.8(13)         |
| C8   | 0.1859(5)    | 0.1190(6)    | 0.383(3)     | 8.4(17)         |
| C9   | 0.2177(6)    | 0.1289(7)    | 0.4274(20)   | 7.8(16)         |
| C10  | 0.2342(5)    | 0.1598(5)    | 0.376(3)     | 6.5(14)         |
| C11  | 0.2175(4)    | 0.1772(5)    | 0.2958(18)   | 4.2(11)         |
| C12  | 0.1865(4)    | 0.1741(5)    | -0.0229(18)  | 3.2(9)          |
| C13  | 0.2201(5)    | 0.1640(5)    | - 0.0168(19) | 4.3(11)         |
| C14  | 0.2373(4)    | 0.1547(5)    | -0.135(3)    | 5.3(13)         |
| C15  | 0.2214(5)    | 0.1578(5)    | -0.2428(22)  | 5.6(13)         |
| C16  | 0.1866(5)    | 0.1673(5)    | -0.2551(20)  | 4.5(11)         |
| C17  | 0.1711(4)    | 0.1749(5)    | -0.1356(22)  | 4.3(11)         |
| C18  | 0.1796(4)    | 0.2321(4)    | 0.1306(22)   | 3.9(11)         |
| C19  | 0.1770(4)    | 0.2500(5)    | 0.2465(23)   | 4.7(12)         |
| C20  | 0.1855(6)    | 0.2814(6)    | 0.2666(21)   | 5.8(14)         |
| C21  | 0.1969(5)    | 0.2986(6)    | 0.165(3)     | 7.4(16)         |
| C22  | 0.2005(5)    | 0.2843(6)    | 0.0501(23)   | 6.8(14)         |
| C23  | 0.1922(5)    | 0.2495(5)    | 0.0422(21)   | 5.1(12)         |
| C24  | 0.0985(4)    | 0.2335(5)    | 0.3556(23)   | 4.0(10)         |
| C25  | 0.1061(5)    | 0.2647(5)    | 0.4073(18)   | 4.6(11)         |
| C26  | 0.1177(6)    | 0.2688(7)    | 0.5228(24)   | 8.6(17)         |
| C27  | 0.1213(5)    | 0.2388(7)    | 0.5891(24)   | 7.7(16)         |
| C28  | 0.1154(5)    | 0.2069(6)    | 0.5441(21)   | 7.0(15)         |
| C29  | 0.1035(5)    | 0.2039(5)    | 0.4241(19)   | 4.7(11)         |
| C30  | 0.0352(5)    | 0.2253(5)    | 0.2138(19)   | 4.1(11)         |
| C31  | 0.0200(5)    | 0.2109(5)    | 0.3183(23)   | 6.3(15)         |
| C32  | -0.0169(4)   | 0.2080(5)    | 0.3193(23)   | 5.9(13)         |
| C33  | - 0.0353(5)  | 0.2189(5)    | 0.215(3)     | 7.4(17)         |
| C34  | -0.0210(4)   | 0.2334(5)    | 0.110(3)     | 4.8(12)         |
| C35  | 0.0148(5)    | 0.2342(5)    | 0.109(3)     | 6.5(15)         |
| C36  | 0.0880(4)    | 0.2669(5)    | 0.1059(21)   | 4.0(10)         |
| C37  | 0.0707(5)    | 0.2985(5)    | 0.1520(18)   | 3.9(10)         |
| C38  | 0.0776(4)    | 0.3279(5)    | 0.0854(22)   | 4.6(5)          |
| C39  | 0.0969(5)    | 0.3284(6)    | -0.0249(22)  | 6,1(6)          |
| C40  | 0.1140(5)    | 0.2989(5)    | -0.0711(21)  | 5.5(6)          |
| C41  | 0.1083(5)    | 0.2685(5)    | 0.0077(20)   | 4,5(5)          |
| C42  | 0            | 1/2          | 0.841(22)    | 38.8(75)        |
| CII  | 0.0330(6)    | 0.4906(7)    | 0.795(3)     | 28,4(12)        |
| C12  | 0            | 1/2          | 1.0213(21)   | 13.0(6)         |
| C43  | 0.0871(16)   | 0.1193(16)   | 0.488(7)     | 17.7(21)        |
| C13  | 0.0659(5)    | 0.0765(5)    | 0.4821(22)   | 20.9(7)         |
| C14  | 0.0501(7)    | 0.1241(7)    | 0.392(3)     | 28.7(11)        |
| C15  | 0.0979(7)    | 0.0981(7)    | 0.329(4)     | 30.3(11)        |

phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  13.8 (s, CH<sub>3</sub>), 25.0 (s, CH<sub>2</sub>), 62.4 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} = 32.6$  Hz,  $J_{P_{1-C}} = 102.9$  Hz, C<sub>1</sub>), 127–135 (phenyl C), 143.6 (s, C<sub>c</sub>).

Table 7

Coordinates and isothermal data of non-hydrogen atoms for 5e with e.s.d. in parentheses

| Atom       | <u>х</u> у   |                         | 2                      | B <sub>eq</sub>   |
|------------|--------------|-------------------------|------------------------|-------------------|
| Pt         | 0.132769(24) | 0.25476(3)              | 0.231523(15)           | 2.711(11)         |
| PI         | 0.26321(15)  | 0.23136(15)             | 0.13605(9)             | 2.91(8)           |
| P2         | 0.26933(15)  | 0.33415(15)             | 0.34313(9)             | 2.96(8)           |
| S          | -0.15377(18) | 0.02631(18)             | 0.20498(11)            | 5.92(11)          |
| Cl         | - 0.0281(5)  | 0.2055(6)               | 0.1463(4)              | 4.4(4)            |
| C2         | -0.0720(5)   | 0.1827(6)               | 0.2153(4)              | 4.0(4)            |
| C3         | -0.0333(5)   | 0.2785(6)               | 0.2850(3)              | 3.6(3)            |
| C4         | -0.1579(6)   | 0.0175(6)               | 0.3023(4)              | 4.7(4)            |
| C5         | -0.2325(6)   | 0.0695(6)               | 0.3525(4)              | 5.1(4)            |
| C6         | -0.2375(7)   | 0.0575(7)               | 0.4263(4)              | 6.3(5)            |
| C7         | -0.1710(7)   | -0.0101(7)              | 0.4490(5)              | 7.9(6)            |
| C8         | -0.0981(8)   | - 0.0622(7)             | 0.3993(5)              | 8.4(6)            |
| C9         | -0.0892(7)   | -0.0489(7)              | 0.3257(5)              | 6.5(5)            |
| C10        | 0.2469(5)    | 0.0678(5)               | 0.0819(3)              | 2.8(3)            |
| C11        | 0.1594(5)    | - 0.0298(6)             | 0.0971(3)              | 3.7(4)            |
| C12        | 0.1515(6)    | -0.1541(5)              | 0.0577(4)              | 4.5(4)            |
| C13        | 0.2315(6)    | -0.1789(6)              | 0.0032(4)              | 4.6(4)            |
| C14        | 0.3171(6)    | - 0.0825(6)             | -0.0129(3)             | 4.3(4)            |
| C15        | 0.3278(5)    | 0.0405(5)               | 0.0259(3)              | 3.5(3)            |
| C16        | 0.4292(5)    | 0.2973(5)               | 0.1598(3)              | 3.1(3)            |
| C17        | 0.4964(6)    | 0.4103(6)               | 0.1484(4)              | 4.4(4)            |
| C18        | 0.6246(6)    | 0.4676(6)               | 0.1674(4)              | 5.7(4)            |
| C19        | 0.6871(6)    | 0.3942(7)               | 0.1977(4)              | 5.8(5)            |
| C20        | 0.6243(6)    | 0.2831(6)               | 0.2096(4)              | 4.9(4)            |
| C21        | 0.4968(6)    | 0.2358(6)               | 0.1919(3)              | 4.0(3)            |
| C22        | 0.2222(5)    | 0.3040(5)               | 0.0055(3)              | 2.9(3)            |
| C23        | 0.1972(6)    | 0.41/8(0)               | 0.0943(3)              | 4.1(4)<br>5.0(4)  |
| C24        | 0.1001(6)    | 0.4/58(0)               | 0.0438(4)<br>0.0255(4) | 3.((4)<br>4.7(4)  |
| C25        | 0.1487(6)    | 0.4193(0)               | -0.0555(4)             | 4, /(4)<br>A 7(A) |
| C26        | 0.1/31(0)    | 0.3004(0)               |                        | 4.7(4)<br>2.9(A)  |
| C27        | 0.2093(0)    | 0.2303(0)               | 0.0147(3)              | 3.0(4)            |
| C28        | ().39(2(3)   | (),4/20(2)<br>0.4067(6) | 0.2420(3)              | 3.7(4)            |
| C29        | 0.5108(0)    | 0.4907(0)               | 0.3571(4)              | 5 3(4)            |
| CJU        | 0.000407     | 0.0079(0)               | 0.3381(4)              | 6 0(4)            |
| CSI        | 0.3000(7)    | 0.0971(0)               | 0.3200(4)              | 5 2(4)            |
| C32        | 0.4539(7)    | 0.0775(0)               | 0 3222(3)              | 4 1(4)            |
| C33        | 0.3304(0)    | 0.3030(0)               | 0 4330(3)              | 3 2(3)            |
| C34        | 0.2010(3)    | 0.5097(5)               | 0.4813(4)              | 4.3(4)            |
| C35        | 0.2330(0)    | 0.5072(5)               | 0 5503(4)              | 5.5(4)            |
| C30        | 0.0063(6)    | 0.4509(6)               | 0.5704(4)              | 5.2(4)            |
| C37        | 0.0629(6)    | 0.3286(6)               | 0.5247(4)              | 4.6(4)            |
| C30        | 0.1150(6)    | 0.2970(5)               | 0.4582(3)              | 3.8(4)            |
| C39        | 0.3370(5)    | 0.2206(5)               | 0.3640(3)              | 3.1(3)            |
| C40        | 0.3370(3)    | 0.2518(6)               | 0.4316(3)              | 4.1(4)            |
| C41        | 0.4613(6)    | 0.1617(6)               | 0.4491(4)              | 5.2(4)            |
| C42        | (1, 4013, 0) | 0.0404(6)               | 0.4025(4)              | 5.3(4)            |
| C43        | 0.3403(6)    | 0.0066(6)               | 0.3380(4)              | 5.0(4)            |
| C44        | 0.2978(6)    | 0.0962(5)               | 0.3183(3)              | 4.1(4)            |
| C45        | 0 4361(9)    | 0.7458(9)               | 0.1336(5)              | 10.7(7)           |
| C10        | 0.4718(3)    | 0.66937(25)             | 0.04811(16)            | 11.08(20)         |
| C12        | 0.5172(3)    | 0.8916(3)               | 0.17641(18)            | 14.34(23)         |
| C12<br>B   | 0.0641(9)    | 0.6638(8)               | 0.2489(5)              | 6.5(6)            |
| 5<br>E1    | 0.0307(5)    | 0.5449(4)               | 0.2356(4)              | 13.0(5)           |
| 1°1<br>17) | 0.1740(5)    | 0.6946(5)               | 0.2170(3)              | 12.1(4)           |
| F4<br>F2   | -0.0115(7)   | 0.7074(6)               | 0.2271(4)              | 19.6(7)           |
| rj<br>Ea   | 0.0086(5)    | 0.7266(5)               | 0.3272(3)              | 11.39(16)         |
| <b>F4</b>  | 0.0700(37    | 0.7200(37               |                        |                   |

3.2.7. { $Pt(PPh_3)_2[\eta^3 - CH_2C(S^iPr)CH_2]$ }(BF<sub>4</sub>) (5c) The yield of 5c was 59% (207 mg) from 341 mg (0.41 mmol) of 1. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.2 ( $J_{P-Pt} =$ 3792 Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.20 (6H, d,  $J_{H-H} = 6.0$ 

Hz, CH<sub>3</sub>), 2.78 (1H, hep,  $J_{H-H} = 6.3$  Hz, CH), 3.20 (2H, d with <sup>195</sup>Pt satellites,  $J_{P-H} = 5.1$  Hz,  $J_{PI-H} = 44.4$  Hz,  $H_{anti}$ ), 3.38 (2H,  $H_{syn}$ ), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  23.2 (s, CH<sub>3</sub>), 36.3 (s, C(Me)<sub>2</sub>), 64.0

Table 8

Coordinates and isothermal data of non-hydrogen atoms for 6e with e.s.d. in parentheses

| Atom        | <i>x</i>                | У           | 2                                | B <sub>eq</sub>  |
|-------------|-------------------------|-------------|----------------------------------|------------------|
| Pt          | 0.13373(3)              | 0.25786(3)  | 0.234831(5)                      | 2.760(13)        |
| Se          | -0.16341(8)             | 0.02398(9)  | 0.20007(5)                       | 5.38(5)          |
| Pi          | 0.26766(17)             | 0.32893(17) | 0.34517(10)                      | 3.01(10)         |
| P2          | 0.26599(17)             | 0.23635(18) | 0.13984(10)                      | 3.03(10)         |
| C1          | -0.0330(6)              | 0.2826(7)   | 0.2900(4)                        | 3.6(4)           |
| C2          | -0.0725(6)              | 0.1900(7)   | 0.2159(4)                        | 3.6(4)           |
| C3          | -0.0252(6)              | 0.2200(7)   | 0.1513(4)                        | 4.1(5)           |
| C4          | -0.1611(7)              | 0.0138(7)   | 0.3019(5)                        | 4.4(4)           |
| C5          | -0.0914(8)              | - 0.0531(8) | 0.3210(5)                        | 6.2(6)           |
| C6          | -0.0953(9)              | - 0.0667(9) | 0.3932(7)                        | 8.3(7)           |
| C7          | -0.1661(9)              | -0.0159(10) | 0.4458(6)                        | 7.9(7)           |
| C8          | -0.2344(9)              | 0.0528(9)   | 0.4275(5)                        | 7.1(6)           |
| Cy<br>Cy    | -0.2353(7)              | 0.0651(8)   | 0.3552(5)                        | 5.3(5)           |
| Ciu         | 0.3348(6)               | 0.2166(6)   | 0.3637(4)                        | 3.4(4)           |
|             | 0.4168(7)               | 0.2467(7)   | 0.4291(4)                        | 4.7(5)           |
| 012         | 0.4598(8)               | 0.1573(8)   | 0.4440(5)                        | 5.9(5)           |
|             | 0.2250(9)               | 0.0368(8)   | 0.3962(5)                        | 6.2(6)           |
| C14         | 0.3339(8)               | 0.0051(7)   | 0.3331(5)                        | 5.5(5)           |
| C15<br>C16  | 0.2944(7)               | 0.0954(7)   | 0.3167(4)                        | 4.1(4)           |
| C10         | 0.1972(0)               | 0.3709(0)   | 0.4352(4)                        | 3.0(4)           |
| CIR         | 0.1095(7)               | 0.2874(7)   | 0.4554(4)                        | 4.1(4)           |
| C19         | 0.0855(8)               | 0.3173(8)   | 0.5228(4)                        | 4.8(5)           |
| C20         | 0.1714(8)               | 0.4303(0)   | 0.5098(4)                        | 5.4(5)           |
| C21         | 0.2273(7)               | 0.5275(8)   | 0.3304(3)                        | 5.7(5)           |
| C22         | 0.3894(6)               | 0.4574(6)   | 0.4024(4)                        | 4.5(5)           |
| C23         | 0.5166(7)               | 0.407(7)    | 0.3470(4)                        | 3.5(4)           |
| C24         | 0.5999(7)               | 0.5989(8)   | 0.3043(4)<br>0.367 <i>4</i> (\$) | 4.0(3)<br>5 5(5) |
| C25         | 0,5586(8)               | 0.6898(8)   | 0 353 <i>A</i> (5)               | 3.3(3)<br>6.9(8) |
| C26         | 0,4338(8)               | 0.6687(8)   | 0 3342(5)                        | 5.6(5)<br>5.6(5) |
| C27         | 0.3500(7)               | 0.5581(7)   | 0 * 303(4)                       | A 3(A)           |
| C28         | 0.4351(6)               | 0.2999(6)   | 0.1641(4)                        | 3 1 ( 3 )        |
| C29         | 0.4979(7)               | 0.2353(7)   | 0.1953(4)                        | 3.8(4)           |
| C30         | 0.6275(7)               | 0.2794(8)   | 0.2129(4)                        | 49(5)            |
| C31         | 0.6936(7)               | 0.3880(8)   | 0.2014(5)                        | 5.4(5)           |
| C32         | 0.6338(7)               | 0.4517(7)   | 0.1724(5)                        | 5.1(5)           |
| C33         | 0.5038(7)               | 0.4085(7)   | 0.1533(4)                        | 4.3(5)           |
| C34         | 0.2264(6)               | 0.3103(6)   | 0.0732(4)                        | 3.2(4)           |
| C35         | 0.2063(7)               | 0.4242(7)   | 0.1034(4)                        | 4.2(4)           |
| CJO         | 0.1679(7)               | 0.4815(7)   | 0.0556(5)                        | 5.0(5)           |
| C37         | 0.1500(7)               | 0.4263(8)   | - 0.0224(5)                      | 4.9(5)           |
| C38         | 0.1706(7)               | 0.3144(8)   | -0.0535(4)                       | 5.1(5)           |
| C39         | 0.2089(7)               | 0.2546(7)   | - 0.0070(4)                      | 4.1(4)           |
|             | 0.2478(6)               | 0.0757(6)   | 0.0836(4)                        | 3.2(4)           |
| C41<br>C42  | 0.1590(6)               | -0.0186(7)  | 0.0985(4)                        | 4.0(4)           |
| C42<br>C43  | 0.1492(7)               | -0.1400(7)  | 0.0580(5)                        | 5.3(5)           |
| C43<br>CAA  | 0.2257(7)               | -0.1677(7)  | 0.0011(5)                        | 5.1(5)           |
| C-44<br>MAS | 0.3137(7)               | -0.0735(7)  | - 0.0138(4)                      | 4.6(4)           |
| R           | 0.5209(0)               | 0.0464(7)   | 0.0270(4)                        | 3.7(4)           |
| 6<br>Fi     | 0.0043(7)               | 0.6668(11)  | 0.2514(7)                        | 6.8(8)           |
| F2          | 0.0247(7)               | 0.7382(0)   | 0.3268(3)                        | 11.9(5)          |
| F3          | 0 :035(6)               | U.3480(3)   | 0.2438(4)                        | 11.2(5)          |
| Fa          | 0.1733(0/<br>0.0055(0)  | 0.0940(0)   | 0.2247(4)                        | 11.1(4)          |
| C46         | 0.0033(9)<br>() ASAQ(Q) | 0.7013(9)   | 0.2145(5)                        | 17.5(8)          |
| CH          | 0.7377777<br>N 4552(2)  | V. 7382(10) | 0.1332(6)                        | 7.7(7)           |
| C12         | v, 7333(3)<br>A 272(3)  | 0.025(3)    | 0.03631(17)                      | 9.25(18)         |
| C13         | 0.5830( <i>A</i> )      | 0.9120(3)   | 0.14977(19)                      | 10.18(21)        |
|             | いJ0J入4J                 | 0.1414(3)   | 0.18473(21)                      | 11.7(3)          |

(dd with <sup>195</sup>Pt satellites,  $J_{P-C} = 36.8$  Hz,  $J_{P1-C} = 98.2$  Hz, C<sub>1</sub>), 127–135 (phenyl C), 143.2 (s, C<sub>c</sub>). Anal. Found: C, 54.56; H, 4.35. C<sub>42</sub>H<sub>41</sub>SP<sub>2</sub>PtBF<sub>4</sub> Calc.: C, 54.73; H, 4.48%.

3.2.8.  $\{Pt(PPh_3)_2[\eta^3 - CH_2C(S'Bu)CH_2]\}(BF_4)$  (5d) The yield of 5d was 78% (156 mg) from 178 mg (0.21 mmol) of 1. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.4 ( $J_{P-Pt}$  = 3884 Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.33 (9H, s, CH<sub>3</sub>), 3.47

| Table 9<br>Selected bond distant | nces (Å) and angles (de                        | g)              |                            |                   |          |
|----------------------------------|------------------------------------------------|-----------------|----------------------------|-------------------|----------|
| {Pt(PPh,), [n <sup>3</sup> -CH,  | C(OEt)CH, ]}(BF4)(4b                           | )               |                            |                   |          |
| Pt-P1                            | 2.297(3)                                       | Pt-P2           | 2.292(3)                   | Pt-Cl             | 2.17(1)  |
| Pt-C2                            | 2.21(1)                                        | Pt-C3           | 2.19(1)                    | C1-C2             | 1.37(2)  |
| C2-C3                            | 1.36(2)                                        | C2O1            | 1.42(2)                    | C4-01             | 1.33(3)  |
| C2=C5                            | 1.39(4)                                        |                 |                            |                   |          |
| 07-02                            |                                                |                 | 05 2(4)                    |                   | 126 0(4) |
| P1-Pt-P2                         | 104.5(1)                                       | P1-Pt-C1        | 95.3(4)                    | PI-PI-C2          | 120.9(4) |
| P1-Pt-C3                         | 161.0(4)                                       | P2-Pt-C1        | 160.1(4)                   | P2-Pt-C2          | 125.0(4) |
| P2-Pt-C3                         | 94.5(4)                                        | C1-Pt-C2        | 36.5(6)                    | CI-Pt-C3          | 65.7(5)  |
| C2-Pt-C3                         | 35.9(6)                                        | Pt-C1-C2        | 73.3(8)                    | Pt-C2-C1          | 70.2(8)  |
| Pt-C2-C3                         | 71.0(8)                                        | Pt-C3-C2        | 73.2(9)                    | Pt-C2-O1          | 120(1)   |
| C1-C2-C3                         | 120(1)                                         | C1-C2-O1        | 117(1)                     | C3-C2-O1          | 121(2)   |
| C201C4                           | 133(2)                                         |                 |                            |                   |          |
|                                  | CORNER DURE VA                                 | -)              |                            |                   |          |
| $\{Pt(PPh_3)_2 \eta^3-CH\}$      | 2C(UPn/CH <sub>2</sub> ]}(Br <sub>4</sub> )(4) | ?/<br>D+ D2     | 2 284(2)                   | Pt-C1             | 2.176(7) |
| Pt-Pl                            | 2.295(2)                                       | PI-P2           | 2.204(2)                   |                   | 1.38(1)  |
| Pt-C2                            | 2.246(6)                                       | PI-C3           | 2.100(0)                   | C1-C2             | 1 415(9) |
| C2-C3                            | 1.43(1)                                        | 02-0            | 1.301(9)                   | 0                 |          |
| P1-Pt-P2                         | 101.73(6)                                      | P1-Pt-C1        | 94.0(2)                    | P1-Pt-C2          | 127.7(2) |
| $P1_Pt_C^3$                      | 158.5(2)                                       | P2-Pt-C1        | 164.0(2)                   | P2-Pt-C2          | 129.4(2) |
| $P_2 P_1 = C_3$                  | 97.3(2)                                        | C1-Pt-C2        | 36.3(3)                    | C1-Pt-C3          | 66.7(3)  |
| $r_2 - r_1 - c_3$                | 37 5(3)                                        | Pt-C1-C2        | 74.6(4)                    | Pt-C2-C1          | 69.1(4)  |
| $C_2 = F_1 = C_3$                | 69.0(3)                                        | Pt=C3=C2        | 73.5(4)                    | Pt-C2-O           | 120.5(4) |
| $P_{1} = C_{2} = C_{3}$          | 117 3(7)                                       | $C_{1}$         | 118.0(6)                   | C3C2O             | 122.9(6) |
| $C_1 = C_2 = C_3$                | 110.1(5)                                       |                 |                            |                   |          |
| U2-U-U4                          | 119.1(3)                                       |                 |                            |                   |          |
| {Pt(PPh,),[η <sup>3</sup> -CH    | ,C(SEt)CH,]}(BF4)(5b                           | )               |                            |                   | 2 20(2)  |
| PI-PI                            | 2.298(4)                                       | Pt-P2           | 2.261(5)                   | Pt-Cl             | 2.20(2)  |
| Pt-C2                            | 2.24(2)                                        | Pt-C3           | 2.18(2)                    | C1-C2             | 1.39(3)  |
| C2-C3                            | 1.45(3)                                        | C2-S            | 1.76(2)                    | C4-S              | 1.95(3)  |
|                                  | 103 8/4)                                       |                 | 161 3(5)                   | P1-Pt-C2          | 126.7(6) |
| Pl-Pt-P2                         | 103.3(2)                                       |                 | 05 3(5)                    | $P_2 = P_1 = C_2$ | 126.7(6) |
| P1=Pt=C3                         | 93.6(5)                                        | P2-P1-C1        | ソン・マ( <i>ン)</i><br>うた A(サ) |                   | 67.7(7)  |
| P2=Pt=C3                         | 163.0(5)                                       |                 | $\frac{30.4(7)}{74(1)}$    | Di=C2=C1          | 70(1)    |
| C2-PtC3                          | 38.4(7)                                        | Pt-CI-C2        | 74(1)                      | Di=C?S            | 120(1)   |
| Pt=C2=C3                         | 69(1)                                          | PI-C1-C2        | 13(1)                      | C1.C7.S           | 115(2)   |
| C1=C2-C3                         | 118(2)                                         | C1=C2=S         | 123(2)                     | C3=C2-0           | 1.0(0)   |
| lp( pph. ). In <sup>3</sup> .Ch  | LC(SPI)CH_1)(BF_)(5                            | e)              |                            |                   |          |
| Di Di                            | 2 204(2)                                       | Pt-P2           | 2.286(2)                   | Pt-C1             | 2.177(6) |
|                                  | 2 204(6)                                       | Pt=C3           | 2,177(6)                   | C1-C2             | 1.413(9) |
| FI=C2<br>C2 C2                   | 1 277(8)                                       | C2-S            | 1,743(6)                   | C4-S              | 1.779(7) |
|                                  | 101 00(6)                                      | P1_Pt_C1        | 92.5(2)                    | P1-Pt-C2          | 126.7(2) |
| PI - PI - PZ                     | 159 4(2)                                       | $P_2 P_1 = C_1$ | 164.2(2)                   | P2-Pt-C2          | 130.4(2) |
| PI = PI = C3                     | 120.4(2)                                       | C1 = Pt = C2    | 37.6(2)                    | ClPtC3            | 66.9(2)  |
| P2-Pt-C3                         | 90.U(2)<br>26.6(2)                             | $C_1 = C_2$     | 72.2(3)                    | Pt-C2-C1          | 70.1(3)  |
| C2-Pt-C3                         | 30.6(2)                                        | $F(-C) = C^2$   | 72.2(3)                    | Pt-C2-S           | 123.0(3) |
| Pt-C2-C3                         | /0.0(3)                                        |                 | 115 (0(5)                  | C3-C2-S           | 125.8(3) |
| C1-C2-C3                         | 118.0(6)                                       | CI-C2-5         | 110.0(0)                   | •••               |          |
| C2-S-C4                          | 104.8(3)                                       |                 |                            |                   |          |
| {Piln <sup>3</sup> .CH.C(SeP     | h)CH_1(PPh_)_}(BF_)                            | бе)             |                            |                   | 0.181(6) |
| Pt_P1                            | 2,283(2)                                       | Pt-P2           | 2.297(2)                   | Pt-C1             | 2.181(0) |
| P_C?                             | 2.205(6)                                       | Pt-C3           | 2.183(7)                   | C1-C2             | 1.43(1)  |
| C2-C3                            | 1 41(1)                                        | C2-Se           | 1.881(7)                   | C4–Se             | 1.904(8) |
| U2-U3                            | 1.41(1/                                        |                 | 07.0(0)                    | D1_D-C7           | 131.0(2) |
| P1-Pt-P2                         | 102.64(7)                                      | P1-Pt-C1        | 97.0(2)                    | $r_1 - r_1 - C_2$ | 125.4(2) |
| P1-Pt-C3                         | 163.5(2)                                       | P2-Pt-C1        | 158.7(2)                   | r2-ri-C2          | 67 6(3)  |
| P2-Pt-C3                         | 91.9(2)                                        | C1-Pt-C2        | 38.1(3)                    |                   | 70.0(4)  |
| C2-Pt-C3                         | 37.4(3)                                        | Pt-C1-C2        | 71.9(4)                    | Pt-C2-C1          | 122 8(2) |
| Pt-C2-C3                         | 70,5(4)                                        | Pt-C3-C2        | 72.2(4)                    | PI-C2-Se          | 117 (15) |
| C1-C2-C3                         | 117,7(7)                                       | C1-C2-Se        | 124.6(5)                   | C3-C2-Se          | 117.0(3) |
| C2-Se-C4                         | 102.7(3)                                       |                 |                            |                   |          |

(2H, d with <sup>195</sup>Pt satellites,  $J_{P-H} = 7.6$  Hz,  $J_{Pt-11} = 40.0$ Hz,  $H_{anti}$ ), 3.63 (2H,  $H_{syn}$ ), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  31.4 (s, CH<sub>3</sub>), 48.7 (s,  $J_{P-C} = 11.2$ Hz, SCMe<sub>3</sub>), 70.7 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} = 3.4$ , 33.8 Hz,  $J_{P-C} = 92.2$  Hz, C<sub>1</sub>), 127–135 (phenyl C), 136.1 (s,  $J_{P-C} = 20$  Hz, C<sub>2</sub>).

# 3.2.9. $\{Pt(PPh_3), [\eta^3 - CH_2C(SPh)CH_2]\}(BF_4)$ (5e)

The yield of 5e was 68% (351 mg) from 452 mg (0.54 mmol) of 1. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.2 ( $J_{P-Pt}$  = 3801 H<sub>2</sub>). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.13 (2H, dd with <sup>195</sup>Pt satellites,  $J_{H-H} = 3.4$  Hz,  $J_{P-H} = 8.4$  Hz,  $J_{Pt-H} = 42.5$  Hz,  $H_{anti}$ ),  $\delta$  3.26 (2H, d with <sup>195</sup>Pt satellites,  $J_{H-H} = 3.4$  Hz,  $H_{syn}$ ),  $\delta$  7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  63.0 (dd with <sup>195</sup>Pt satellites,  $J_{P-C} = 4.8$ , 36.5 Hz,  $J_{P-C} = 97.8$  Hz, C<sub>1</sub>), 127–135 (phenyl C), 142.3 (t,  $J_{P-C} = 2.9$  Hz, C<sub>2</sub>). Anal. Found: C, 52.20; H, 3.95. C<sub>45</sub>H<sub>39</sub>SP<sub>2</sub>PtBF<sub>4</sub> · CH<sub>2</sub>Cl<sub>2</sub> · H<sub>2</sub>O Calc.: C, 52.19; H, 4.09%.

# 3.2.10. ${Pt(Ph_3P)_2[\eta^3-CH_2C(p-SC_6H_4OH)CH_2]}-{BF_4}_2$ (5f)

To a CDCl<sub>3</sub> solution containing 2 (35 mg) was injected equimolar amounts of p-HSC<sub>6</sub>H<sub>4</sub>OH. The NMR spectra were taken at 298 K. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$ 18.4 ( $J_{p_0P_1} = 3765$  Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  2.80 (2H, d with <sup>193</sup>Pt satellites,  $J_{P_0H} = 8.5$  Hz,  $J_{P_1H} = 45.5$  Hz, H<sub>anti</sub>), 3.26 (2H, s, H<sub>syn</sub>), 7.1–7.5 (m, phenyl H), 7.97 (1H, s, OH). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  62.1 (dd with <sup>195</sup>Pt satellites,  $J_{P_0C} = 3.3$ , 37.4 Hz,  $J_{P_1C} = 100.7$  Hz, C<sub>1</sub>), 127–135 (phenyl C), 144.4 (C<sub>c</sub>).

# 3.2.11. $\{Pt(PPh_3)_2[\eta^3 \cdot CH_2C(SePh)CH_2]\}(BF_4)$ (6e)

The yield of **6e** was 83% (316 mg) from 318 mg (0.38 mmol) of **1**. <sup>31</sup>P NMR (CDCl<sub>3</sub>)  $\delta$  18.2 ( $J_{p-p_t} =$  3841 Hz). <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.34 (2H, s, H<sub>syn</sub>), 3.34 (2H, d with <sup>195</sup>Pt satellites,  $J_{p-H} =$  7.8 Hz,  $J_{P_t-H} =$  40.4 Hz,  $H_{anii}$ ), 7.1–7.5 (m, phenyl H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  66.2 (dd with <sup>195</sup>Pt satellites,  $J_{p-C} =$  4.7, 35.5 Hz,  $J_{P_t-C} =$  95.5 Hz, C<sub>1</sub>), 124.0 (s, C<sub>c</sub>), 127–135 (phenyl C). Anal. Found: C, 53.45; H, 4.14. C<sub>45</sub>H<sub>39</sub>SeP<sub>2</sub>PtBF<sub>4</sub> Calc.: C, 53.91; H, 3.92%.

# 3.2.12. X-ray crystallographic analysis

Diffraction data were measured on a Nonius CAD-4 diffractometer with graphite-monochromated Mo K  $\alpha$  radiation. The cell parameters were determined by a least-squares fit on 25 reflections. Intensity data were

corrected for absorption on the basis of an experimental  $\psi$  rotation curve. The refinement procedure was by a full-matrix least-squares method including all the nonhydrogen atoms anisotropically. Hydrogen atoms were fixed at the ideal geometry and C-H distance 1.0 Å; their isotopic thermal parameters were fixed to the values of the attached carbon atoms at the convergence of the isotropic refinement. Atomic scattering factors were taken from the *International Tables of Crystallographic Data*, Vol. IV [15]. Computing programs are from the NRC VAX package [16]. Crystallographic data and selected atomic coordinates and bond parameters are collected in Tables 3-9. The rest of the data are supplied as supplementary material.

#### Acknowledgements

We thank the National Science Council, Taiwan for financial support.

#### References

- [1] V.V. Krivykh, E.S. Taits, P.V. Petrovskii, Y.T. Struchkov and A.I. Yanovskii, *Mendeleev Commun.*, (1991) 103.
- [2] C.P. Casey and C.S. Yi, J. Am. Chem. Soc., 114 (1992) 6597.
- [3] T.-M. Huang, J.-T. Chen, G.-H. Lee and Y. Wang, J. Am. Chem. Soc., 115 (1993) 1170.
- [4] P.W. Blosser, D.G. Schimpff, J.C. Gallucci and A. Wojcicki, Organometallics, 12 (1993) 1993.
- [5] P.W. Blosser, J.C. Gallucci and A. Wojcicki, J. Am. Chem. Soc., 115 (1993) 2994.
- [6] P.J. Stang, C.M. Crittell and A.M. Arif, Organometallics, 12 (1993) 4799.
- [7] T.-M. Huang, R.-H. Hsu, C.-S. Yang, J.-T. Chen, G.-H. Lee and Y. Wang, Organometallics. 13 (1994) 3657.
- [8] A. Wojcicki, New. J. Chem., 18 (1994) 61.
- [9] M.W. Baize, J.L. Furilla and A. Wojcicki, *Inorg. Chim. Acta*, 223 (1994) 1.
- [10] R.-H. Hsu, J.-T. Chen, G.-H. Lee and Y. Wang, in preparation.
- [11] C.P. Casey and C.S. Yi, J. Am. Chem. Soc., 114 (1992) 6597.
- [12] R.E. Rülke, D. Kliphuis, C.J. Elsevier, J. Fraanje, P.W.N.M. van Leeuwen and K. Vrieze, J. Chem. Soc., Chem. Commun., (1994) 1817.
- [13] M.H. Chisholm, H.C. Clark and D.H. Hunter, J. Chem. Soc., Chem. Commun., (1971) 809.
- [14] M.H. Chisholm and W.S. Johns, Inorg. Chem., 14 (1975) 1189.
- [15] International Tables for X-ray Crystallography, Vol IV, Kynoch Press, Birmingham, UK, 1974.
- [16] NRC VAX, E.J. Gabe, Y. LePage, J.-P. Charland, F.L. Lee and P.S. White, J. Appl. Crystallogr., 22 (1989) 384.